Laboratory 2: Voltage-Controlled Oscillator

1 Objectives

- 1. Understand the basic concepts of VCOs.
- 2. Analyze the frequency response of a sine wave VCO.

1.1 MC1648 VCO

In this experiment, we will study the operation of a voltage-controlled oscillator (VCO) based on the MC1648 IC. The MC1648 is a high-speed differential oscillator whose output frequency depends on an external tuning voltage applied to a varactor diode.

Figure 1: MC1648 based VCO

- DC Control Voltage Input: A DC voltage is applied at the input terminal. This voltage is fed to a varactor diode (D_1) , which acts as a voltage-dependent capacitor.
- Tuned Circuit (L_1, C_2, D_1) : Together with the inductor L_1 and capacitor C_2 , the varactor forms a resonant LC tank circuit. As the DC control voltage changes, the capacitance of D_1 varies, shifting the resonant frequency of the oscillator.
- MC1648 Oscillator Core: The MC1648 amplifies and sustains oscillations at the frequency determined by the LC network. By changing the input DC voltage, the output frequency can be controlled.
- Frequency Adjustment: The variable resistor VR_1 allows manual tuning of the VCO's center frequency.
- Output: The generated signal is available at the output terminal through the coupling capacitor C₆.

1

2 Experiments

Note: The laboratory report must be submitted at the end of the session.

Required Equipment

1) KL-92001 Module, 2) KL-93004 Module, 3) Oscilloscope.

Experiment 1

- 1. Locate the MC1648 in the FM modulator circuit on the KL-93004 module. Insert jumper J2 to select inductor $L_1=100\,\mu\text{H}$.
- 2. Insert jumper J1 to select $V_{in}=5\,\mathrm{V}$. With this voltage, the output frequency will be the center frequency.
- 3. Observe the output using an oscilloscope. Adjust VR1 until a sinusoidal signal is obtained. Then, record the frequency value and sketch the output signal.
- 4. Using the spectrum analyzer, observe and record the output spectrum.
- 5. Remove jumper J1.
- 6. Connect a DC voltage of +2V to input (I/P2). Observe the output and record the output frequency.
- 7. Repeat this step for other DC voltage values, noting them in the following table.

V(V)	2	3	4	5	6	7	8	9	10	11	12	13	14
f(Hz)													

Table 1: Output Frequencies for Varying DC Input Voltages

8. Using the results from the table, plot the frequency as a function of the DC voltage.

Experiment 2

- 9. Insert jumper J3 to select inductor L_2 .
- 10. Repeat steps 2 to 7 from Experiment 1.

Discussion

1. Calculate the sensitivity, then write the transfer function expressions for the two VCOs.

2

- 2. Comment on the results obtained. Is this VCO linear?
- 3. What conclusions can be drawn?

Last updated: October 3, 2025